Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.

For example, given nums = [-2, 0, 1, 3], and target = 2.

Return 2. Because there are two triplets which sums are less than 2:

[-2, 0, 1] [-2, 0, 3] Follow up: Could you solve it in O(n2) runtime?

**解题思路 ** Binary Search Using n O(n2) runtime
注意: all hi in (lo, hi] will also satisfy the condition , 所以是 count += hi - lo 而不是count++;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
    public int threeSumSmaller(int[] nums, int target) {
        int count = 0;
        Arrays.sort(nums);
        int len = nums.length;
        
        for (int i = 0; i < len - 2; i++) {
            int lo = i + 1, hi = len - 1;
            while (lo < hi) {
                if (nums[i] + nums[lo] + nums[hi] >= target) {
                    hi--;
                } else {
                    count += hi - lo;  // all hi in (lo, hi] will also satisfy the condition
                    lo++;
                }
            }
        }
        return count;
    }